
A Natural Semantics for Lazy EvaluationJohn LaunchburyComputing Science DepartmentGlasgow Universityjl@dcs.glasgow.ac.ukAbstractWe de�ne an operational semantics for lazy evaluationwhich provides an accurate model for sharing. The onlycomputational structure we introduce is a set of bind-ings which corresponds closely to a heap. The semanticsis set at a considerably higher level of abstraction thanoperational semantics for particular abstract machines,so is more suitable for a variety of proofs. Furthermore,because a heap is explicitly modelled, the semantics pro-vides a suitable framework for studies about space be-haviour of terms under lazy evaluation.1 IntroductionIn this paper we provide an operational semantics forlazy evaluation of an extended �-calculus. Laziness im-plies a number of things: �rst that the language is non-strict, second that certain reductions are shared, andlastly that evaluation ceases once an outer lambda isencountered. The semantics captures each of these as-pects.Why bother with an explicit semantics for lazinessat all? The reason is that it is often quite hard to knowhow a particular term will behave under lazy evaluation.Will a certain subcomputation be repeated or not? Howmuch heap will be required? Will a particular closurebe accessed once or many times?The following example shows the e�ect of sharing.When evaluating the term,let u = 3 + 2 ; v = u + 1 in v + vv is demanded twice but, because the closure which v

represents is overwritten with its value (6) after the �rstdemand, the computation u + 1 is only performed once(as a consequence, u is only accessed once). The letconstruct may be thought of as naming closures (or sub-computations) that are only evaluated when required.For a more taxing example, consider the di�erencein evaluation of the following two terms.let u = 3 + 2 ; f = �x :(let v = u + 1 in v + x)in f 2 + f 3let u = 3 + 2 ; f = (let v = u + 1 in �x :v + x)in f 2 + f 3In the �rst of these the computation u + 1 is repeated,once for each use of f (and so u is accessed twice). Inthe second, the computation u + 1 is performed onceonly (and u is accessed just once). Showing why thishappens is exactly what the semantics is for. In partic-ular, this work was motivated by a need to be preciseabout when closures where built, how often computa-tions were performed, how often closures were accessed,and the operational implications of lambda lifting andfull laziness [PL91]. Similarly, a semantics for laziness isvital precursor to being precise about the di�erence be-tween laziness and optimal reduction strategies [L�ev80].The semantics for laziness presented in this paperare simpler than any previously published. The keyreason is that we separate the semantics into two parts.The �rst stage is a static conversion of the �-calculusinto a form where the creation and sharing of closures isexplicit. This leads directly to a very simple semanticsat the level of closures.The rest of the paper is organised as follows. Afterdiscussing related work, we de�ne the explicit-closureversion of the �-calculus we use, and describe the staticnormalising transformation for converting arbitrary �-expressions into that language. We then provide a nat-ural semantics (a big-step operational semantics) forterms in the language, which both preserves and is com-putationally adequate with respect to an appropriate

denotational semantics. The paper concludes with ap-plications and extensions.2 Related WorkThere have already been a number of attempts to pro-vide semantics for laziness. Perhaps the best knownis due to Abramsky and Ong [Abr90, Ong88] wherethey explore the theoretical consequences of treating�-terms in weak head normal form as values. Abram-sky and Ong argue that since implementations of lazylanguages cease reduction once an outer lambda is en-countered (i.e. values are terms in weak head normalform|whnf), the semantic implications of this shouldbe studied. This leads to a large and powerful theory,but one in which sharing is ignored completely. Thusthey omits precisely the aspect of laziness we wish tostudy.Abramsky and Ong's semantics are de�ned at a highlevel of abstraction. At the other end of the scale is theoperational semantics given to de�ne the behaviour ofabstract machines. Examples of this are the G-machine[Jon84], the STG-machine [Pey92], the TIM [FW87]and TIGRE [KL89]. At the level of these machineswe have to deal with code pointers, stacks, indirectionnodes, and the like. These operational semantics cap-ture laziness completely, but contain so much extra de-tail as to make reasoning or proofs nigh on impossible.Furthermore, being so speci�c makes it hard to translateresults about one abstract machine to another. One ofthe goals of this work is to provide a common semanticbase for a wide range of abstract machines.To be able to study sharing, therefore, we need asemantics containing more detail than Abramsky andOng's, but less than provided by particular abstract ma-chines. The earliest intermediate level semantics seemsto have been Josephs' [Jos89]. This denotational se-mantics is continuation-based, and manipulates both anenvironment and a store. Sharing is successfully mod-elled, including the sharing that occurs in implementing�xed points. However, using both a store and a contin-uation provides the semantics with all the usual mecha-nisms required for modelling imperative languages withgotos! so again it makes the prospect of performingproofs rather daunting. Furthermore, because the se-mantics was denotational, Josephs had to introduce aforcing function (corresponding to the print-demand)for controlling the extent of evaluation required at anypoint.An operational alternative was adopted by Pu-rushothaman and Seaman [PS92]. The authors presentan operational semantics for Lazy PCF which theyprove equivalent to a standard denotational semantics

(observations at higher types are treated specially be-cause of this). Their rules capture most sharing, butas many closures are built within terms, the applicationrule is greatly complicated, and also the semantics isunsuitable for studying space behaviour. However, themain weakness is the inability of the semantics to cap-ture sharing in recursive computations. By their seman-tics, a recursive term �t :e is equivalent to e[(�t :e)=t].If e is of the form if e 0 then Nil else Cons 1 t , for ex-ample, then the computation of e 0 will be repeated forevery element of the in�nite list. Sharing has been lost.Much work has been done on making substitutionexplicit, the most relevant for our purposes being thatby Maranget [Mar91], where he develops a framework ofLabelled-Terms Rewriting Systems. Using these he stud-ies the weak �-calculi and shows the lazy strategy to beoptimal. The resulting semantics for laziness is signi�-cantly more complex than that presented here (havingbeen developed with di�erent goals in mind), and alsoomits recursive lets which are a vital part of modernlazy functional languages.The semantics for Id also deserve a mention at thispoint [ANP89]. While not lazy, Id has a non-strict se-mantics with sharing de�ned by a small-step semanticsof a core of the Id language. Many rules may apply atany one time, but as the system is con
uent the result isdeterministic. By de�ning a particular reduction orderand extending their rules to discard unneeded redexes,laziness can be modelled. A further point of contact isthat, when providing a semantics for the kernel of Id,Ariola and Arvind use a similar technique to ours formaking closures explicit [AA91].3 Modelling LazinessThe semantics we present is an intermediate-level oper-ational semantics, lying midway between a straightfor-ward denotational semantics (or, equivalently, the op-erational semantics of Abramsky and Ong) and a fulloperational semantics of an abstract machine. As suchit accurately captures the sharing within lazy evaluationwithout requiring the extra machinery either of contin-uations or of stacks, code pointers, dumps, and the like.The heap is the only computational structure required.We capture laziness in two stages. The �rst isa static transformation of the �-expression to a nor-malised form in which sharing is easy to express, and thesecond is a dynamic semantics for normalised lambdaexpressions. Separating these phases means that thedynamic semantics is much simpler that would other-wise be the case.

3.1 Normalising TermsWe begin with a lambda calculus extended with (recur-sive) lets and normalise it to a restricted syntax. Thesenormalised �-expressions have two distinguishing fea-tures: all bound variables are distinct; and all appli-cations are applications of an expression to a variable.Thus,x 2 Vare 2 Exp ::= �x :ej e xj xj let x1 = e1 ; : : : ; xn = en in eOperationally lets may be viewed as the construct thatbuilds closures in the heap, and the fact that lets arerecursive allows a closure to contain a reference to itself.This can give rise to cyclic structures in the heap, ex-actly as arises in most implementations. Without letsit would be impossible to build cycles, so they are morethan merely syntactic sugar.Having distinct names means that scope becomesirrelevant. In particular, though lets permit recursion,they may be used to model a nonrecursive binding asno untoward name capture can occur.The syntactic restriction on application means thatarguments to functions are only ever explicitly-namedclosures. This is valuable in that it removes the issue ofgenerating new closure sites from within the dynamicsemantics.The process of normalisation can be speci�ed in twostages. The �rst, which we write as ê, is simply �-conversion: a renaming of all the bound variables in eusing completely fresh variables. The second, which wewrite as e�, ensures that function arguments are alwaysvariables. It is de�ned as follows.(�x :e)� = �x :(e�)x� = x(let x1 = e1; : : : ; xn = en in e)�= let x1 = (e�1); : : : ; xn = (e�n) in (e�)(e1 e2)� = (e�1) e2 if e2 is a variable= let y = (e�2) in (e�1) y otherwise[y is a fresh variable]Thus, apart from �-conversion, normalisation consistspurely of naming the argument terms in applications,and expressing that naming using let .This process of normalisation borrows heavily fromthe STG language [Pey92], which has an even more re-stricted form of application. The value of the STG lan-guage is its direct operational reading (though far lessabstract than appearing here).

3.2 Dynamic SemanticsThe rules are presented in Figure 1. They obey thefollowing naming conventions:� ;�;� 2 Heap = Var j! Expz 2 Val ::= �x :eA heap is a partial function from variables to expres-sions. It may be viewed as an (unordered) set of vari-able/expression pairs, binding distinct variable namesto expressions. A value is a expression in whnf, i.e.whose outermost structure is a lambda. As we see later,it causes no problems to add constants and constructorsand to treat these as values also.Judgements of the form � : e + � : z are to beread, \the term e in the context of the set of bindings �reduces to the value z together with the (modi�ed) setof bindings �." In the course of evaluation, new bind-ings may be added to the heap, and old bindings whichbound variables to unevaluated terms may be updatedto bind those variables to their evaluated counterparts.A proof of a judgement corresponds to a reductionsequence. A proof may fail in one of two ways: eitherthere may be no �nite proof that a reduction is valid,which corresponds to an in�nite loop, or there may beno rule which applies in (a sub-part of) the proof. whichcorresponds to a so-called black hole. Denotationally,each of these failures corresponds to a value ?.3.2.1 Reduction RulesReferring to Figure 1, the Lambda rule states that termswhose outermost component is a lambda rewrite tothemselves without a�ecting the heap. Such terms arein whnf so are already values and have no need of fur-ther evaluation.The Application rule reduces the term to the left ofthe application (the function), substitutes the argumentin for the �-variable, and continues reduction. Simplesubstitution is su�cient because we only substitute avariable, so no duplication of work is incurred. This isthe point of the static e� transformation.The payo� of the renaming transformation ê appearsin the Let rule. The bindings may be added to the heapwith no worries about name clash.The most intriguing rule is the Variable rule. Thisis where sharing is captured. To evaluate a variable xin the context of some heap, the heap must contain abinding of the form x 7! e. Assuming this is the case,e is reduced in the context of the heap omitting thereference to x . If this reduction produces a value z , thenew heap is augmented with the binding x 7! z , and a

� : �x :e + � : �x :e Lambda� : e + � : �y:e0 � : e0[x=y] + � : z� : e x + � : z Application� : e + � : z(�; x 7! e) : x + (�; x 7! z) : ẑ Variable(�; x1 7! e1 � � � xn 7! en) : e + � : z� : let x1 = e1 � � � xn = en in e + � : z LetFigure 1: Reduction Rulesrenamed version of z is returned as the result. This isa natural place for renaming to occur, as it is only herethat terms may be duplicated. As we will show later,this one occurrence of renaming is su�cient to avoid allunwanted name capture.What if x is recursive, and e has a (possibly indirect)reference back to x? It may seem that reducing e in thecontext of a heap which contains no reference to x couldcause a problem. There are two possibilities: either ereduces to whnf without requiring the value of x , inwhich case we reintroduce a binding for x (binding it toits value now), or else e requires the value of x beforereducing to whnf. This means that x depends directlyon itself before any value can be returned, so shouldhave denotation ?. In this latter case we will attemptto reduce x in a heap containing no reference to x . Asthere is no rule which covers this situation the proof forthe reduction sequence fails. Note that the variable ruleis the only place where the proof may actually fail1.4 ExamplesTo examine the behaviour of the �-expressions pre-sented in the introduction, we will need to make useof the following additional rules. They are discussed in1Once we add constants the Application rule could cause fail-ure on a type-incorrect term.

more detail in Section 6.1.� : n + � : n� : e1 + � : n1 � : e2 + � : n2� : e1 + e2 + � : n1 + n2To stress the sequential nature of reduction we layproofs out vertically: if � : e + � : z we write� : e24 a sub � proof24 another sub � proof� : zwith sub-derivations contained within the square brack-ets. To see this notation in action consider reducinglet u = 3 + 2 ; v = u + 1 in v + v in the context of an

empty heap.fg : let u = 3 + 2 ; v = u + 1 in v + vfu 7! 3 + 2 ; v 7! u + 1g : v + v2666666666666666664 fu 7! 3 + 2 ; v 7! u + 1g : v266666666666664 fu 7! 3 + 2g : u + 12666664 fu 7! 3 + 2g : u264 fg : 3 + 2h ...fg : 5fu 7! 5g : 5� fu 7! 5g : 1fu 7! 5g : 1fu 7! 5g : 6fu 7! 5 ; v 7! 6g : 6� fu 7! 5 ; v 7! 6g : vfu 7! 5 ; v 7! 6g : 6fu 7! 5 ; v 7! 6g : 12The result is the number 12, together with a heap inwhich u is bound to 5 and v to 6.The next two examples exhibit the di�erence be-tween de�ning a closure inside a lambda, and outside.First inside: (as a shorthand we will write f 7! � � � forf 7! �x :let v = u + 1 in v + x)fg : let u = 3 + 2 ; f = �x :let v = u + 1 in v + xin f 2 + f 3fu 7! 3 + 2 ; f 7! � � �g : f 2 + f 3266666666666664 fu 7! 3 + 2 ; f 7! � � �g : f 224 fu 7! 3 + 2 ; f 7! � � �g : ffu 7! 3 + 2 ; f 7! � � �g: �x :let s = u + 1 in s + xfu 7! 3 + 2 ; f 7! � � �g: let s = u + 1 in s + 2fu 7! 3 + 2 ; f 7! � � � ; s 7! u + 1g : s + 2h ...fu 7! 5 ; f 7! � � � ; s 7! 6g : 8266666666666664 fu 7! 5 ; f 7! � � � ; s 7! 6g : f 324 fu 7! 5 ; f 7! � � � ; s 7! 6g : ffu 7! 5 ; f 7! � � � ; s 7! 6g: �x :let t = u + 1 in t + xfu 7! 5 ; f 7! � � � ; s 7! 6g: let t = u + 1 in t + 3fu 7! 5 ; f 7! � � � ; s 7! 6 ; t 7! u + 1g : t + 3h ...fu 7! 5 ; f 7! � � � ; s 7! 6 ; t 7! 6g : 9fu 7! 5 ; f 7! � � � ; s 7! 6 ; t 7! 6g : 17Notice each time f is called, its body is copied andrenamed. After application and substitution f 's bodygenerates a new closure in the heap bound to the com-putation u + 1 , so the value of u + 1 is not shared

across separate applications of f (though the compu-tation 3 + 2 is shared). Contrast this with the casewhere the let occurs ouside the lambda of f :fg : let u = 3 + 2 ; f = let v = u + 1 in �x :v + xin f 2 + f 3fu 7! 3 + 2 ; f 7! let v = u + 1 in �x :v + xg :f 2 + f 32666666666666666664 fu 7! 3 + 2 ; f 7! let v = u + 1 in �x :v + xg : f 2266664 fu 7! 3 + 2 ; f 7! let v = u + 1 in �x :v + xg : f� fu 7! 3 + 2g : let v = u + 1 in �x :v + xfu 7! 3 + 2 ; v 7! u + 1g : �x :v + xfu 7! 3 + 2 ; v 7! u + 1 ; f 7! �x :v + xg :�x :v + xfu 7! 3 + 2 ; v 7! u + 1 ; f 7! �x :v + xg : v + 2264 fu 7! 3 + 2 ; v 7! u + 1 ; f 7! �x :v + xg : vh ...fu 7! 5 ; v 7! 6 ; f 7! �x :v + xg : 6fu 7! 5 ; v 7! 6 ; f 7! �x :v + xg : 824 fu 7! 5 ; v 7! 6 ; f 7! �x :v + xg : f 3fu 7! 5 ; v 7! 6 ; f 7! �x :v + xg : v + 3fu 7! 5 ; v 7! 6 ; f 7! �x :v + xg : 9fu 7! 5 ; v 7! 6 ; f 7! �x :v + xg : 17This time the closure for v is loaded into the heap onceonly, and the binding for f is updated to its whnf. Thusthe computation of u + 1 is performed just once, andthe result is shared across all uses of f .4.1 RecursionThe simplest case of recursion (using let) islet x = x in xAn attempt to reduce this reaches a point where no ruleapplies, so no progress may be made toward �nding aproof of reduction.fg : let x = x in xfx 7! xg : x� fg : xfailureMany run-time systems would halt at this point andreport a black-hole (a detectably self-dependent in�niteloop). In contrast, the loop de�ned bylet f = �x :f x in f 2

is not detected as a black hole. Its \evaluation" pro-ceeds as follows.fg : let f = �x :f x in f 2ff = �x :f xg : f 2� ff = �x :f xg : fff = �x :f xg : �x :f xff = �x :f xg : f 2� ff = �x :f xg : fff = �x :f xg : �x :f x...This time there is always an applicable rule, so an at-tempt to reduce this term leads to an in�nite proof.More operationally, because there is no single closurewhich ends up pointing directly to itself, the loop is notdiscovered. This sort of example provides intuition asto the relative bene�ts of alternative de�nitions of �x .The most direct de�nition is:let �x = �f :f (�x f) in �xbut better sharing is given by the alternativelet �x = �f :(let x = f x in x) in �xbecause a new cycle in the heap is created each time thesecond de�nition is used. Using this second de�nitionof �x , the reduction of �x id ceases with a black hole,but using the �rst de�nition of �x leads to an in�niteloop.The section on extensions includes more examplesof recursion.5 Semantic Properties5.1 Retaining NormalisationHaving gone to the bother of normalising terms beforebeginning reduction, we should check that the proper-ties of terms introduced by normalisation, are preservedthroughout a reduction proof. Preservation of the prop-erty that functions are only ever applied to variables isimmediately obvious: because we only ever substitutevariables for variables it is impossible to create a term inwhich an expression is applied to a non-variable. Thenaming property is less obvious and requires a moregeneral de�nition.De�nition 1A heap/term pair � : e is distinctly named if every bind-ing occurring in � and in e binds a distinct variable(which is also distinct from any free variables of � : e).2

By \binding occurring in �" we mean either top levelbindings, or let or lambda bindings occurring withinbound expressions. Only the latter two can occur withinexpressions.Theorem 1If � : e + � : z and � : e is distinctly named, then ev-ery heap/term pair occurring in the proof of the reduc-tion is also distinctly named.ProofThe rules for Lambda and Let are trivial. Applicationfollows as soon as we recognise that if � : �y :e 0 is dis-tinctly named, then so is� : e 0[x=y]. The only rule thatcould cause a problem is the Variable rule, but even hereif� : z is distinctly named then so is (�; x 7! z) : ẑ , be-cause by de�nition of renaming with fresh variable, ẑwill only bind completely fresh variables. Note that �cannot contain a binding for x else (� ; x 7! e) : x wouldnot have been distinctly named. 2In the light of this result we restrict the de�nition of+ to apply solely to distinctly named heap/term pairs.For the rest of the paper a statement like � : e + � : zcarries the assumption that � : e is distinctly named.5.2 Relating to Denotational Semantics5.2.1 Semantics of TermsFollowing Abramsky and Ong [Abr90], the denotationalsemantics models functions by a lifted function space,so it distinguishes between a term
 (a non-terminatingcomputation) and �x :
 . This distinction in the modelre
ects the fact that reduction ceases at whnf ratherthan head normal form (hnf). We represent lifting usingthe injection Fn, and the projection using #Fn (writtenas a post�x operator).An environment is a function mapping variables intovalues, � 2 Env = Var ! Valuewhere Value is some appropriate domain containing atleast a lifted version of its own function space. Theinitial \unde�ned" environment �0 maps all variablesto ?.Meanings are given to expressions using the seman-tic function [[�]] : Exp ! Env ! Value which is de-�ned as follows.[[�x :e]]� = Fn (��:[[e]]�tfx 7!�g)[[e x]]� = ([[e]]�) #Fn ([[x]]�)[[x]]� = �(x)[[let x1 = e1 � � � xn = en in e]]�= [[e]]ff x1 7!e1 ��� xn 7!en gg�

The recursion generated by a let is captured through arecursively de�ned environment, given by the semanticfunction ff�gg : Heap ! Env ! Env de�ned as follows.ffx1 7! e1 � � � xn 7! en gg�= ��0:� t (x1 7! [[e1]]�0 � � � xn 7! [[en]]�0)where � stands for the least �xed point operator. Be-cause the bindings in the heap are (mutually) recursive,we obtain a recursively de�ned environment. Note thatthe de�nition only makes sense on environments � whichare consistent with � (i.e. if � and � bind the same vari-able, then they are bound to values for which an upperbound exists).The function ff�gg : Heap ! Env ! Env should bethought of as an environment modi�er|it extends itsenvironment argument by the meanings of the bindingsgiven in its heap argument. This
exibility is useful forgiving a semantics to the heap itself in a heap/term pairto allow for free variables. Note that the rules nowhererequire the terms to be closed. Indeed, because of thevariable rule, some reductions are bound to be of openterms: a variable is only rebound once the expressionto which it was bound reduces to whnf.An equivalent de�nition of the semantics for heapsis ff ; gg� = �ff� ; x 7! e gg� = ��0:ff� gg�0 t (x 7! [[e]]�0) t �It is an easy consequence of this de�nition that, assum-ing � and � are consistent, 8x :�(x) v (ff� gg�)(x). Thisis because the heap only adds new bindings, or re�nesold ones. Using this fact, and by unfolding the recur-sion, we can show that,��0:ff� gg�0 t (x 7! [[e]]�0) t �= ��0:ff� gg�0 t (x 7! [[e]]ff� gg�0) t �We will use this fact in the proof of the variable case ofthe Correctness Theorem (Theorem 2).We also de�ne an ordering� on environments, whichcaptures the concept of \added bindings". We de�ne� � �0 to mean8x : �(x) 6= ?) �(x) = �0(x)So if � � �0 then �0 may bind more variables than �, butotherwise is equal to �.5.2.2 CorrectnessWe are now in a position to state and prove the correct-ness of the operational rules with respect to the denota-tional semantics. The correctness theorem states thatreductions preserve the meanings of terms and only al-ter the meaning of heaps by (possibly) adding new bind-ings.

Theorem 2If � : e + � : z then for all environments �,[[e]]ff� gg� = [[z]]ff�gg� ^ ff� gg� � ff� gg�ProofThe proof is by induction on the structure of the deriva-tion � : e + � : z . There are four cases depending onthe form of e:Case: �x :eThis is immediate.Case: e xThe �rst part is a direct calculation.[[e x]]ff�gg�= ([[e]]ff� gg�) #Fn ([[x]]ff� gg�)= ([[�y :e 0]]ff� gg�) #Fn ([[x]]ff� gg�)[Induction]= (��:[[e 0]]��tfy 7!�g) ([[x]]ff�gg�)= [[e 0]]��tfy 7![[x]]ff� gg�g= [[e 0[x=y]]]��= [[z]]�� [Induction]The second part follows from transitivity of �.Case: xThe variable rule is only applicable if there is a bind-ing for the variable in the heap, so the reductionis of the form: (� ; x 7! e) : x + (�; x 7! z) : ẑ . Byinduction we may assume that [[e]]ff� gg� = [[z]]ff� gg�and that ff� gg� � ff� gg�. We are required toprove that, [[x]]ff� ;x 7!e gg� = [[ẑ]]ff�;x 7!z gg� and thatff� ; x 7! e gg� � ff�; x 7! z gg�. We shall do the second�rst.ff�; x 7! e gg�= ��0 : ff� gg�0 t (x 7! [[e]]�0) t �= ��0 : ff� gg�0 t (x 7! [[e]]ff� gg�0) t �= ��0 : ff� gg�0 t (x 7! [[z]]ff�gg�0) t �[Induction]� ��0 : ff� gg�0 t (x 7! [[z]]ff�gg�0) t �� ��0 : ff� gg�0 t (x 7! [[z]]�0) t �= ff�; x 7! z gg�Using this, we can now show the �rst part.[[x]]ff�;x7!egg�= ff� ; x 7! e gg� (x)= ff�; x 7! z gg� (x) [defn of �]= [[z]]ff�;x 7!z gg� [defn of ff�gg]= [[ẑ]]ff�;x 7!z gg� [�-conversion]Case: let x1 = e1 ; : : : ; xn = en in eFor the �rst part,[[let x1 = e1; : : : ; xn = en in e]]ff�gg�= [[e]]��0:ff�gg�t(x1 7![[e1]]�0 ���xn 7![[en]]�0)= [[e]]ff� ;x1 7!e1 ;:::;xn 7!en gg�[Variables x1; : : : ; xn not bound in �]= [[z]]ff� gg� [Induction]

as required. For the second part,ff� gg� � ff� ; x1 7! e1 ; : : : ; xn 7! en gg�[Variables x1; : : : ; xn not bound in �]� ff� gg� [Induction] 25.2.3 Computational AdequacyHaving proved that when reductions exist they preservethe denotational semantics, we must now characterisewhen reduction exist.Theorem 3[[e]]ff� gg�0 6= ? , (9�; z : � : e + � : z)The theorem states that a heap/term pair reduces ex-actly when its denotation is non-bottom (in the initialenvironment �0).The one direction is easy to show as it arises as acorollary to Theorem 2.Theorem 4� : e + � : z) [[e]]ff� gg�0 6= ?ProofThe term value z can only be of the form �x :e 0. Then[[e]]ff� gg�0 = [[�x :e 0]]ff�gg�0= Fn (��:[[e 0]]ff� gg�0tfx 7!�g)6= ? 2The other direction (that is, if the denotational seman-tics is non-bottom then the natural semantics has avalid reduction) is harder to show and requires a numberof intermediate steps. As they stand, the denotationaland natural semantics formulations are too far apart tobe related directly. To remedy this we introduce a newversion of each which can then be directly related toeach other.We begin with the denotational semantics, and de-�ne a resourced denotational semantics. The semanticfunction takes as an extra argument an element of thecountable chain domain C de�ned as the least solutionto the domain equation C = C?. We represent liftingin C by the injection function S : C ! C . Thus the el-ements of C are ?, S ?, S (S ?), and so on, with limitelement S (S (S � � �)) which we write as !.The type of the environment is given by� : Var ! (C ! Val). That is, variables are bound tofunctions which, when provided with a resource, yield a

value.N [[e]]� ? = ?N [[�x :e]]� (S k) = Fn (��:N [[e]]�tfx 7!�g)N [[e x]]� (S k) = (N [[e]]� k) #Fn (N [[x]]�) kN [[x]]� (S k) = � x kN [[let x1 = e1 � � � xn = en in e]]� (S k)= N [[e]]��0:(�tx1 7!N [[e1]]�0t���txn 7!N [[en]]�0) kThis resourced semantics equals the original semanticsif given in�nite resources. That is, if 8x :� x = � x !then [[e]]� = N [[e]]� !Put the other way around, the resourced semantics al-lows us to focus on approximations to the original de-notational semantics. In particular, as the resourcedsemantics is a continuous function (being de�ned usingcontinuous operations only), then if the original seman-tics assigns a non-bottom value to some term, so doessome �nite approximation. This provides the proof ofthe following lemma.Lemma 5If [[e]]� 6= ?, then there exists a natural number m suchthat N [[e]]� (Sm?) 6= ? where 8x : � x = � x !.Returning to our overall goal, we now have to work fromthe other direction. We de�ne an alternative naturalsemantics in which Application and Variable rules arereplaced with the following alternatives:� : e + � : �y:e0 (�; y 7! x) : e0 + � : z� : e x + � : z App(�; x 7! e) : ê + � : z(�; x 7! e) : x + � : z VarThe only e�ect of the new application rule is to increasethe number of closures by adding indirections whenevera lambda is reduced, rather than by substituting thenew value for the bound variable. It mimics the opera-tion on the environment in the denotational semanticsmore closely than the original version did.The e�ect of the new variable rule is to remove up-dating from the semantics, and to remove the possibilityof detecting black holes (the only way a reduction proofmay fail in the revised system is by being in�nite).Apart from these changes the two versions of thenatural semantics are equivalent: they both respectthe denotational semantics and, furthermore, the sameheap/term pairs reduce successfully. This may be shownby induction on the reduction proofs.Finally, the last link needed is to relate the resourcedsemantics to the alternative version of the natural se-mantics. This is done by the next lemma.

Lemma 6If N [[e]]��:(x1 7!N [[e1]]�t���txn 7!N [[en]]�) (Sm?) 6= ?,then there exists a heap � and a value z such that(x1 7! e1 � � � xn 7! en) : e + � : z in the alternativeversion of the natural semantics.ProofBy induction on m. 2At last we are in a position where we can put the piecestogether and prove the second part of the computationaladequacy theorem.Theorem 7[[e]]ff� gg�0 6= ?) (9�; z : � : e + � : z)ProofIf the original semantics is non-bottom, then by Lemma5 there exists an m such thatN [[e]]��:(x1 7!N [[e1]]� ��� xn 7!N [[en]]�) (Sm?) 6= ?However, by Lemma 6 this implies a reduction proof inthe alternative version of the natural semantics, whichin turn implies a reduction proof in the original version.26 ExtensionsNow that we have de�ned the semantics and shown itto be correct the obvious response is, \so what?" Inthe example section we have already seen the value ofthe semantics for demonstrating when closures are built,updated, and accessed, and when computations are re-peated or shared. While this is an important use of thesemantics it is not the only one.One of our aims is to provide a high level base towhich various gadgets may be added and studied in thecontext of lazy evaluation. In this section we look at anumber of possibilities. It does not constitute anythinglike a detailed examination of these areas; rather itspurpose is to demonstrate potential.6.1 Constructors and ConstantsAdding extra constructs to the language causes noreal di�culty. For example, to extend the languagewith constructors we would add the following syntac-tic forms:c 2 Constructore 2 Exp ::= c x1 � � � xmj case e of fci y1 � � �ymi ! eigni=1...

As before, we expect arbitrary terms to be staticallynormalised in order not to clutter the reduction rules.Constructors are like functions, so they are only to beapplied to variables and, furthermore, they should besaturated, that is, fully applied (by introducing new �-bound variables if necessary).Adding numbers likewise requires the following.n 2 Number� 2 Primitivee 2 Exp ::= nj e1 � e2...Numbers may be viewed as nullary constructors, so re-ally Numbers � Constructor. We assume the operators� (e.g. +, �, >, etc.) are strict in both arguments, andwill produce a nullary constructor such as a number, ora boolean as a result. If this is the case, then � opera-tions require no special treatment during normalisation.Figure 2 shows the rules for these new constructs.Constructors (including numbers) immediately evaluateto themselves. Primitive operations are evaluated byevaluating the left operand, then the right, and then bycarrying out the appropriate operation on the resultingvalues.The Case rule looks complicated purely because ofthe subscripts needed to express the
exibility of theconstruct which allows any number of cases, each con-structor having its own number of arguments. The ruleonly succeeds if the constructor returned by the evalu-ation of e is contained in the case list. If so, then againsimple substitution of the arguments of the construc-tor for the formal variables is su�cient: normalisationensures that these are variables so no sharing is lost.Constructors provide a very simple example of shar-ing in recursively de�ned structures. Taking the exam-ple from the discussion of related work:let u = False; t = if u then Nil else Cons 1 t in t(where the if construct may be thought of as syntacticsugar for a case over booleans). This reduces as follows.fg : let u = False; t = if u then Nil else Cons 1 tin tfu 7! False; t 7! if u then Nil else Cons 1 tg : t2664 fu 7! Falseg : if u then Nil else Cons 1 t� fu 7! Falseg : ufu 7! Falseg : Falsefu 7! Falseg : Cons 1 tfu 7! False; t 7! Cons 1 tg : Cons 1 tThe closure for t has been updated to whnf, and u willnever be accessed again.

� : c x1 � � �xn + � : c x1 � � �xn Constructors� : e + � : ck x1 � � �xmk � : ek[xi=yi]mki=1 + � : z� : case e of fci y1 � � �ymi ! eigni=1 + � : z Case� : e1 + � : n1 � : e2 + � : n2� : e1�e2 + � : n1�n2 PrimitiveFigure 2: Additional Reduction Rules6.2 Garbage CollectionIt is perhaps slightly surprising that a notion of garbagecollection could �nd its way into the semantics. In ret-rospect, however, it is vital that it does so if we everwish to study the space behaviour of lazy programs ata higher level of abstraction than provided by abstractmachines. When a term is said to evaluate in constantspace under lazy evaluation, it only does so if discardedcells are reclaimed. Thus we need a rule for garbagecollection which may be applied at any time, and whichwill discard from the heap any unnecessary closures.To do this we need to augment the + relationwith a set of \active" names, that is, variables stillpossibly needed in the reduction but not necessarilypointed to from the expression currently under reduc-tion. The only rule where this shows up non-trivially isthe Application rule which becomes,� : e +N[fxg � : �y:e0 � : e0[x=y] +N � : z� : e x +N � : zThen one possible rule for garbage collection is,� : e +N � : z(�; x 7! e0) : e +N � : z if x 62 R(� ; e;N)where R(� ; e;N) is the set of variables reachable frome or N via � . There are clearly many ways in whichthis function may be de�ned, the obvious one corre-sponding to the usual method of marking variables, butreference counting is another (possibly giving an overapproximation with cyclic structures).

Note that the garbage collection rule does not pre-serve the semantics of heaps, so a proof showing theequivalence of the system with and without garbage col-lection is required.Once we can specify garbage collection like this, wehave the opportunity to explore alternative methods(perhaps generational or parallel methods) of collect-ing and/or marking. The greater level of abstractionmeans that the results are not tied to one particularabstract machine.6.3 Counting the CostIn the same way that the reduction rules were aug-mented to compute extra information for garbage col-lection, a similar mechanism could be developed forrecording the cost of computation. For example, theApplication rule might become,� : e +p � : �y:e0 � : e0[x=y] +q � : z� : e x +p+q+1 � : zNow the subscripts indicate how many reduction stepswere performed. This may prove to be a useful routefor formalising the notion of cost centres [SP92], and isthe topic of current work.6.4 Abstractions and AnalysesOne motivation for this work was a desire to avoid un-necessary updates [Lau92]. Previously we had no goodsemantics against which to prove our analysis correct.Now that we have such a semantics we can not only hopeto be able to verify our existing analysis, but can also

expect that abstracting the semantics will lead to other(perhaps weaker and cheaper) forms of the analysis.7 ConclusionIn this paper we have presented a natural semanticswhich models lazy evaluation as it is commonly imple-mented. The model works on the level of terms, usinga heap to capture sharing. The result is remarkablysimple, especially when compared with other attempts.The semantics doesn't directly provide a speci�ca-tion for an abstract machine because there is no notionof explicit control. It seems as though this aspect isthe essential cause of the wide diversity of the manyabstract machines, so its omission from the semanticsmeans that there is a reasonable hope for it to providea basis for studying a broad spread of implementations.Finally it is worth commenting on the presence oflets. It turns out that much of the work can be donewithout them. Indeed, by replacing the application rulewith the one used in the proof of computational ade-quacy even the lifting out of arguments can be omittedas sharing is captured by the addition of the indirec-tion. However, lets are irreplaceable in lazy functionallanguages in that they may create cyclic structures inthe heap. This cannot be achieved without them (orwithout something essentially equivalent), and cyclicstructures have an huge implication for the amount ofcomputation that may be performed.8 AcknowledgementsHaving insightful colleagues is a great boon, and I wouldlike to thank Cordelia Hall, John Hughes, Andy Moran,Simon Peyton Jones and Philip Wadler for excelling inthat capacity.References[Abr90] S.Abramsky, The Lazy Lambda Calculus,in D.Turner ed., Declarative Programming,Addison-Wesley, 1990.[AA91] Z.Ariola and Arvind, A Syntactic Approach toProgram Transformations, in Proc. SIGPLANPEPM 91, New Haven, pp 116-129, 1991.[ANP89] Arvind, R.Nikhil and K.Pingali, I-Structures:Data Structures for Parallel Computing, inTOPLAS (11) 4 pp 598-632, Oct 1989.

[FW87] J.Fairbairn and S.Wray, A Simple LazyAbstract-Machine to Execute Supercombina-tors , in Proc. FPCA, Portland, pp 34-45, S-V, 1987.[Jon84] T.Johnsson, E�cient Compilation of LazyEvaluation, in Proc. SIGPLAN Symp. onCompiler Construction, SIGPLAN Notices 19pp 58-59, 1984.[Jos89] M.Josephs, The Semantics of Lazy FunctionalLanguages, in TCS 68, pp 105-111, 1989.[KL89] P.Koopman and P.Lee, A Fresh Look at Com-binator Graph Reduction, in SIGPLAN PLDI89, Portland, pp 110-119, 1989.[Lau92] J.Launchbury, A.Gill, J.Hughes, S.Marlow,S.Peyton Jones and P.Wadler, Avoiding Un-necessary Updates, Glasgow Functional Pro-gramming Workshop, Ayr, (draft proceed-ings), 1992.[L�ev80] J.-J.L�evy, Optimal Reductions in the LambdaCalculus, in Seldin and Hindley eds., ToH.B.Curry: Essays in Combinatory Logic,Lambda Calculus and Formalism, pp 159-191,Academic Press, 1980.[Mar91] L.Maranget, Optimal Derivations in WeakLambda-calculi and in Orthogonal TermRewriting Systems, in Proc SIGPLAN POPL91, Orlando, pp 255-269, 1991.[Ong88] C.-H.L.Ong, The Lazy Lambda Calculus: AnInvestigation in the Foundations of Func-tional Programming, PhD Thesis, ImperialCollege, London, 1988.[Pey92] S.Peyton Jones, Implementing Lazy Func-tional Languages on Stock Hardware: theSpineless Tagless G-Machine, Journal ofFunctional Programming, CUP, 1992, to ap-pear.[PL91] S.Peyton Jones and D.Lester, A Fully-LazyLambda-Lifter in Haskell, Software Practiceand Experience, 21 (5), pp 479-506, 1991.[PS92] S.Purushothaman and J.Seaman, An Ade-quate Operational Semantics of Sharing inLazy Evaluation, in Proc ESOP 92, Rennes,S-V, 1992.[SP92] P.Sansom and S.Peyton Jones, Pro�ling LazyFunctional Languages, Glasgow FunctionalProgrammingWorkshop, Ayr, (draft proceed-ings),1992.

